https://www.liquidsunlightalliance.org/
- Zhang, Qiang; Musgrave, Charles B., III; et el. (2024) A
covalent molecular design enabling efficient CO₂ reduction in strong
acids; Nature Synthesis; 10.1038/s44160-024-00588-4
- Pada Sarker, Hori; Abild‐Pedersen, Frank; et el. (2024) Prediction
of Feasibility of Polaronic OER on (110) Surface of Rutile TiO₂;
ChemPhysChem; Vol. 25; No. 11; e202400060; 10.1002/cphc.202400060
- Jones, Ryan J. R.; Lai, Yungchieh; et el. (2024) Accelerated
screening of gas diffusion electrodes for carbon dioxide reduction;
Digital Discovery; Vol. 3; No. 6; 1144-1149; 10.1039/D4DD00061G
- Huang, Zhihong; Cheng, Tao; et el. (2024) Edge
sites dominate the hydrogen evolution reaction on platinum
nanocatalysts; Nature Catalysis; 10.1038/s41929-024-01156-x
- Heim, Gavin P.; Bruening, Meaghan A.; et el. (2024) Potassium
ion modulation of the Cu electrode-electrolyte interface with ionomers
enhances CO₂ reduction to C₂₊ products; Joule; Vol. 8; No. 5;
1312-1321; 10.1016/j.joule.2024.03.019
- Watkins, Nicholas B.; Lai, Yungchieh; et el. (2024) Electrode
Surface Heating with Organic Films Improves CO₂ Reduction Kinetics on
Copper; ACS Energy Letters; Vol. 9; No. 4; 1440-1445; PMCID
PMC11019637; 10.1021/acsenergylett.4c00204
- Palmer, Levi Daniel; Lee, Wonseok; et el. (2024) Determining
Quasi-Equilibrium Electron and Hole Distributions of Plasmonic
Photocatalysts Using Photomodulated X-ray Absorption Spectroscopy;
ACS Nano; Vol. 18; No. 13; 9344-9353; PMCID PMC10993415; 10.1021/acsnano.3c08181
- Choi, Chungseok; Kwon, Soonho; et el. (2024) CO₂-Promoted
Electrocatalytic Reduction of Chlorinated Hydrocarbons; Journal of
the American Chemical Society; Vol. 146; No. 12; 8486-8491; 10.1021/jacs.3c14564
- Kan, Kevin; Guevarra, Dan; et el. (2024) Accelerated
Characterization of Electrode‐Electrolyte Equilibration;
ChemCatChem; Vol. 16; No. 6; e202301300; 10.1002/cctc.202301300
- Kim, Ye-Jin; Mendes, Jocelyn L.; et el. (2024) Coherent
charge hopping suppresses photoexcited small polarons in ErFeO₃ by
antiadiabatic formation mechanism; Science Advances; Vol. 10;
No. 12; eadk4282; PMCID PMC10954221; 10.1126/sciadv.adk4282
- Goddard, William A., III and Musgrave, Charles B., III (2024) Electrochemical
Nitrate Reduction Catalyzed by Two-Dimensional Transition Metal
Borides; Journal of Physical Chemistry Letters; Vol. 15; No. 7;
1899-1907; 10.1021/acs.jpclett.4c00054
- Statt, Michael J.; Rohr, Brian A.; et el. (2024) Event-driven
data management with cloud computing for extensible materials
acceleration platforms; Digital Discovery; Vol. 3; No. 2; 238-242;
10.1039/d3dd00220a
- Aitbekova, Aisulu; Watkins, Nicholas; et el. (2024) Molecular
Additives Improve the Selectivity of CO₂ Photoelectrochemical Reduction
over Gold Nanoparticles on Gallium Nitride; Nano Letters; Vol. 24;
No. 4; 1090-1095; 10.1021/acs.nanolett.3c03590
- Musgrave, Charles B., III; Li, Yuyin; et el. (2023) Dual atom
catalysts for rapid electrochemical reduction of CO to ethylene;
Nano Energy; Vol. 118, Pt. A; 108966; 10.1016/j.nanoen.2023.108966
- Min, Yimeng; Chang, Ming-Chiang; et el. (2023) Physically
Informed Graph-Based Deep Reasoning Net for Efficient Combinatorial
Phase Mapping; ISBN 979-8-3503-4534-6; 2023 International Conference
on Machine Learning and Applications (ICMLA); IEEE: Piscataway, NJ;
392-399; 10.1109/icmla58977.2023.00061
- Bui, Justin C.; Lucas, Éowyn; et el. (2023) Analysis
of bipolar membranes for electrochemical CO₂ capture from air and
oceanwater; Energy & Environmental Science; Vol. 16; No. 11;
5076-5095; 10.1039/d3ee01606d
- Geng, Peng; Zybin, Sergey; et el. (2023) Quantum
mechanics based non-bonded force field functions for use in molecular
dynamics simulations of materials and systems: The nitrogen and oxygen
columns; Journal of Chemical Physics; Vol. 159; No. 16; 164104; 10.1063/5.0174188
- Osella, Silvio and Goddard, William A., III (2023) CO₂
Reduction to Methane and Ethylene on a Single-Atom Catalyst: A Grand
Canonical Quantum Mechanics Study; Journal of the American Chemical
Society; Vol. 145; No. 39; 21319-21329; PMCID PMC10557142; 10.1021/jacs.3c05650
- Su, Jianjun; Musgrave, Charles B., III; et el. (2023) Strain
enhances the activity of molecular electrocatalysts via carbon nanotube
supports; Nature Catalysis; Vol. 6; No. 9; 818-828; 10.1038/s41929-023-01005-3
- Sun, Qiang; Oliveira, Nicholas J.; et el. (2023) Understanding
hydrogen electrocatalysis by probing the hydrogen-bond network of water
at the electrified Pt–solution interface; Nature Energy; 10.1038/s41560-023-01302-y
- Statt, Michael J.; Rohr, Brian A.; et el. (2023) ESAMP:
event-sourced architecture for materials provenance management and
application to accelerated materials discovery; Digital Discovery;
Vol. 2; No. 4; 1078-1088; 10.1039/d3dd00054k
- Statt, Michael J.; Rohr, Brian A.; et el. (2023) The
materials experiment knowledge graph; Digital Discovery; Vol. 2;
No. 4; 909-914; 10.1039/d3dd00067b
- Xu, Yu; Zheng, Mingze; et el. (2023) Assessing
the Kinetics of Quinone–CO₂ Adduct Formation for Electrochemically
Mediated Carbon Capture; ACS Sustainable Chemistry &
Engineering; Vol. 11; No. 30; 11333-11341; 10.1021/acssuschemeng.3c03321
- Dolmanan, Surani Bin; Böhme, Annette; et el. (2023) Local
microenvironment tuning induces switching between electrochemical CO₂
reduction pathways; Journal of Materials Chemistry A; Vol. 11;
No. 25; 13493-13501; 10.1039/d3ta02558f
- Corpus, Kaitlin Rae M.; Bui, Justin C.; et el. (2023) Coupling
covariance matrix adaptation with continuum modeling for determination
of kinetic parameters associated with electrochemical CO₂ reduction;
Joule; Vol. 7; No. 6; 1289-1307; 10.1016/j.joule.2023.05.007
- Gregoire, John M.; Zhou, Lan; et el. (2023) Combinatorial
synthesis for AI-driven materials discovery; Nature Synthesis; Vol.
2; No. 6; 493-504; 10.1038/s44160-023-00251-4
- Zhang, Huanlei; Cheng, Dongbo; et el. (2023) Tuning
the Interfacial Electrical Field of Bipolar Membranes with Temperature
and Electrolyte Concentration for Enhanced Water Dissociation; ACS
Sustainable Chemistry & Engineering; Vol. 11; No. 21; 8044-8054; 10.1021/acssuschemeng.3c00142
- Statt, Michael J.; Rohr, Brian A.; et el. (2023) The
Materials Experiment Knowledge Graph; 10.26434/chemrxiv-2023-md55t
- Sun, Qiang; Oliveira, Nicholas J.; et el. (2023) Understanding
hydrogen electrocatalysis by probing the hydrogen-bond network of water
at the electrified Pt/solution interface; 10.26434/chemrxiv-2021-gks2k
- Watkins, Nicholas B.; Schiffer, Zachary J.; et el. (2023) Hydrodynamics
Change Tafel Slopes in Electrochemical CO₂ Reduction on Copper; ACS
Energy Letters; Vol. 8; No. 5; 2185-2192; 10.1021/acsenergylett.3c00442
- Musgrave, Charles B., III; Olsen, Kaeleigh; et el. (2023) Partial
Oxidation of Methane Enabled by Decatungstate Photocatalysis Coupled to
Free Radical Chemistry; ACS Catalysis; Vol. 13; No. 9; 6382-6395; 10.1021/acscatal.3c00750
- Goddard, William A., III and Song, Jie (2023) Grand
Canonical Quantum Mechanics with Applications to Mechanisms and Rates
for Electrocatalysis; Topics in Catalysis; 10.1007/s11244-023-01794-8
- Zhu, Kaicheng; Naserifar, Saber; et el. (2023) Topology
induced crossover between Langevin, subdiffusion, and Brownian diffusion
regimes in supercooled water; Physical Chemistry Chemical Physics;
Vol. 25; No. 15; 10353-10366; 10.1039/D2CP04645H
- Tamtaji, Mohsen; Cai, Songhhua; et el. (2023) Single
and dual metal atom catalysts for enhanced singlet oxygen generation and
oxygen reduction reaction; Journal of Materials Chemistry A; Vol.
11; No. 14; 7513-7525; 10.1039/D2TA08240C
- Statt, Michael J.; Rohr, Brian A.; et el. (2023) The
Materials Provenance Store; Scientific Data; Vol. 10; 184; PMCID
PMC10079965; 10.1038/s41597-023-02107-0
- Böhme, Annette; Bui, Justin C.; et el. (2023) Direct
observation of the local microenvironment in inhomogeneous CO₂ reduction
gas diffusion electrodes via versatile pOH imaging; Energy and
Environmental Science; Vol. 16; No. 4; 1783-1795; 10.1039/D2EE02607D
- Su, Jianjun; Musgrave, Charles B., III; et el. (2023) Improving
Molecular Catalyst Activity using Strain-Inducing Carbon Nanotube
Supports; 10.26434/chemrxiv-2022-r9r22
- Watkins, Nicholas B.; Schiffer, Zachary J.; et el. (2023) Hydrodynamics
Determine Tafel Slopes in Electrochemical CO₂ Reduction on Copper;
10.26434/chemrxiv-2023-npdmn
- Tamtaji, Mohsen; Cai, Songhua; et el. (2023) Correction:
Single and dual metal atom catalysts for enhanced singlet oxygen
generation and oxygen reduction reaction; Journal of Materials
Chemistry A; Vol. 11; No. 14; 7783; 10.1039/d3ta90058d
- Rao, Karun K.; Zhou, Lan; et el. (2023) Resolving
atomistic structure and oxygen evolution activity in nickel
antimonates; Journal of Materials Chemistry A; Vol. 11; No. 10;
5166-5178; 10.1039/d2ta08854a
- Nie, Weixuan; Heim, Gavin P.; et el. (2023) Organic
Additive-derived Films on Cu Electrodes Promote Electrochemical CO₂
Reduction to C₂₊ Products Under Strongly Acidic Conditions;
Angewandte Chemie International Edition; Vol. 62; No. 12; Art.
No. e202216102; 10.1002/anie.202216102
- Liu, Hanzhe; Michelsen, Jonathan M.; et el. (2023) Measuring
Photoexcited Electron and Hole Dynamics in ZnTe and Modeling Excited
State Core-Valence Effects in Transient Extreme Ultraviolet Reflection
Spectroscopy; Journal of Physical Chemistry Letters; Vol. 14; No. 8;
2106-2111; 10.1021/acs.jpclett.2c03894
- Schiffer, Zachary J. and Cushing, Scott K. (2023) Reports
From The Frontier-Heterogeneous Electrocatalysts for Sustainable
Electrochemical Synthesis; Interface; Vol. 32; No. 1; 37-39; 10.1149/2.f05231if
- Zoric, Marija R.; Chan, Thomas; et el. (2023) In
situ x-ray absorption investigations of a heterogenized molecular
catalyst and its interaction with a carbon nanotube support; Journal
of Chemical Physics; Vol. 158; No. 7; Art. No. 074703; 10.1063/5.0129724
- Yu, Peiping; Wu, Yu; et el. (2023) Atomistic
mechanisms for catalytic transformations of NO to NH₃, N₂O, and N₂ by
Pd; Chinese Journal of Chemical Physics; Vol. 36; No. 1; 94-102; 10.1063/1674-0068/cjcp2109153
- Palfey, William R.; Rossman, George R.; et el. (2023) Behavior
of Hydrogarnet‐Type Defects in Hydrous Stishovite at Various
Temperatures and Pressures; Journal of Geophysical Research. Solid
Earth; Vol. 128; No. 2; Art. No. e2022JB024980; 10.1029/2022jb024980
- Choi, Chungseok; Wang, Xiaoxiao; et el. (2023) Efficient
electrocatalytic valorization of chlorinated organic water pollutant to
ethylene; Nature Nanotechnology; Vol. 18; No. 2; 160-167; 10.1038/s41565-022-01277-z
- Hossain, Md Delowar; Liu, Zhenjing; et el. (2023) The
kinetics and potential dependence of the hydrogen evolution reaction
optimized for the basal-plane Te vacancy site of MoTe₂; Chem
Catalysis; Vol. 3; No. 1; Art. No. 100489; 10.1016/j.checat.2022.100489
- Watkins, Nicholas B.; Wu, Yueshen; et el. (2023) In
Situ Deposited Polyaromatic Layer Generates Robust Copper Catalyst for
Selective Electrochemical CO₂ Reduction at Variable pH; ACS Energy
Letters; Vol. 8; No. 1; 189-195; 10.1021/acsenergylett.2c02002
- Zhou, Lan; Peterson, Elizabeth A.; et el. (2022) Fe
Substitutions Improve Spectral Response of Bi₂WO₆-Based Photoanodes;
ACS Applied Energy Materials; Vol. 5; No. 12; 15333-15344; 10.1021/acsaem.2c02964
- Follmer, Alec H.; Luedecke, Kaitlin M.; et el. (2022) μ-Oxo
Dimerization Effects on Ground- and Excited-State Properties of a
Water-Soluble Iron Porphyrin CO₂ Reduction Catalyst; Inorganic
Chemistry; Vol. 61; No. 50; 20493-20500; 10.1021/acs.inorgchem.2c03215
- Musgrave, Charles B., III; Prokofjevs, Aleksandrs; et el. (2022) Phosphine
Modulation for Enhanced CO₂ Capture: Quantum Mechanics Predictions of
New Materials; Journal of Physical Chemistry Letters; Vol. 13;
No. 48; 11183-11190; 10.1021/acs.jpclett.2c03145
- Zhou, Lan; Wang, Yu; et el. (2022) Surveying
Metal Antimonate Photoanodes for Solar Fuel Generation; ACS
Sustainable Chemistry & Engineering; Vol. 10; No. 48; 15898-15908;
10.1021/acssuschemeng.2c05239
- Rehman, Faisal; Kwon, Soonho; et el. (2022) High-throughput
screening to predict highly active dual-atom catalysts for
electrocatalytic reduction of nitrate to ammonia; Nano Energy; Vol.
103; No. Part B; Art. No. 107866; 10.1016/j.nanoen.2022.107866
- Rehman, Faisal; Kwon, Soonho; et el. (2022) High-throughput
screening to predict highly active dual-atom catalysts for
electrocatalytic reduction of nitrate to ammonia; Nano Energy; Vol.
103; No. Pt. B; Art. No. 107866; 10.1016/j.nanoen.2022.107866
- Chen, Hsiao-Yi; Sangalli, Davide; et el. (2022) First-principles
ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton
mediated valley depolarization in monolayer WSe₂; Physical Review
Research; Vol. 4; No. 4; Art. No. 043203; 10.1103/physrevresearch.4.043203
- Corpus, Kaitlin Rae M.; Bui, Justin C.; et el. (2022) Beyond
Tafel Analysis for Electrochemical CO₂ Reduction; 10.26434/chemrxiv-2022-9rx0m
- Rehman, Faisal; Kwon, Soonho; et el. (2022) Reaction
mechanism and kinetics for N₂ reduction to ammonia on the Fe-Ru based
dual-atom catalyst; Journal of Materials Chemistry A; Vol. 10;
No. 43; 23323-23331; 10.1039/d2ta06826e
- Xu, Da; Sullivan, Ian; et el. (2022) Comparative
Study on Electrochemical and Thermochemical Pathways for Carbonaceous
Fuel Generation Using Sunlight and Air; ACS Sustainable Chemistry
& Engineering; Vol. 10; No. 42; 13945-13954; 10.1021/acssuschemeng.2c03230
- Zhou, Lan; Guevarra, Dan; et el. (2022) High
throughput discovery of enhanced visible photoactivity in Fe–Cr vanadate
solar fuels photoanodes; Journal of Physics: Energy; Vol. 4; No. 4;
Art. No. 044001; 10.1088/2515-7655/ac817e
- Zhong, Guangyan; Cheng, Tao; et el. (2022) Determining
the hydronium pKα at platinum surfaces and the effect on pH-dependent
hydrogen evolution reaction kinetics; Proceedings of the National
Academy of Sciences of the United States of America; Vol. 119; No. 39;
e2208187119; PMCID PMC9522355; 10.1073/pnas.2208187119
- Li, Sirui; Kwon, Soonho; et el. (2022) Understanding
pH within a nanoscopic water pool; 10.26434/chemrxiv-2022-bjdlh
- Sun, Yuxia; Shin, Hyeyoung; et el. (2022) Highly
Selective Electrocatalytic Oxidation of Amines to Nitriles Assisted by
Water Oxidation on Metal-Doped α-Ni(OH)₂; Journal of the American
Chemical Society; Vol. 144; No. 33; 15185-15192; 10.1021/jacs.2c05403
- Liu, Hanzhe; Klein, Isabel M.; et el. (2022) Element-specific
electronic and structural dynamics using transient X-ray
spectroscopy; 10.48550/arXiv.2106.04793
- Cheng, Wen-Hui; Richter, Matthias H.; et el. (2022) Integrated
Solar‐Driven Device with a Front Surface Semitransparent Catalysts for
Unassisted CO₂ Reduction; Advanced Energy Materials; Art.
No. 2201062; 10.1002/aenm.202201062
- Segev, Gideon; Kibsgaard, Jakob; et el. (2022) The
2022 solar fuels roadmap; Journal of Physics D: Applied Physics;
Vol. 55; No. 32; Art. No. 323003; 10.1088/1361-6463/ac6f97
- Palfey, William R.; Rossman, George R.; et el. (2022) Behavior
of hydrogarnet-type defects in hydrous stishovite at various
temperatures and pressures; 10.1002/essoar.10512070.1
- Tamtaji, Mohsen; Gao, Hanyu; et el. (2022) Machine
learning for design principles for single atom catalysts towards
electrochemical reactions; Journal of Materials Chemistry A; Vol.
10; No. 29; 15309-15331; 10.1039/d2ta02039d
- Greenaway, Ann L.; Ke, Sijia; et el. (2022) Zinc
Titanium Nitride Semiconductor toward Durable Photoelectrochemical
Applications; Journal of the American Chemical Society; Vol. 144;
No. 30; 13673-13687; PMCID PMC9354241; 10.1021/jacs.2c04241
- Klein, Isabel M.; Liu, Hanzhe; et el. (2022) Ab
Initio Prediction of Excited-State and Polaron Effects in Transient XUV
Measurements of α-Fe₂O₃; Journal of the American Chemical Society;
Vol. 144; No. 28; 12834-12841; 10.1021/jacs.2c03994
- Zhou, Lan; Peterson, Elizabeth A.; et el. (2022) Addressing
solar photochemistry durability with an amorphous nickel antimonate
photoanode; Cell Reports Physical Science; Vol. 3; No. 7; Art.
No. 100959; 10.1016/j.xcrp.2022.100959
- Luo, Yao; Chang, Benjamin K.; et el. (2022) Comparison
of the canonical transformation and energy functional formalisms for ab
initio calculations of self-localized polarons; Physical Review B;
Vol. 105; No. 15; Art. No. 155132; 10.1103/PhysRevB.105.155132
- Guevarra, Dan; Zhou, Lan; et el. (2022) Materials
structure–property factorization for identification of synergistic phase
interactions in complex solar fuels photoanodes; npj Computational
Materials; Vol. 8; Art. No. 57; 10.1038/s41524-022-00747-1
- Rahmanian, Fuzhan; Flowers, Jackson; et el. (2022) Enabling
Modular Autonomous Feedback-Loops in Materials Science through
Hierarchical Experimental Laboratory Automation and Orchestration;
Advanced Materials Interfaces; Vol. 9; No. 8; Art. No. 2101987; 10.1002/admi.202101987
- Lai, Yungchieh; Watkins, Nicholas B.; et el. (2022) Molecular
Coatings Improve the Selectivity and Durability of CO₂ Reduction
Chalcogenide Photocathodes; ACS Energy Letters; Vol. 7; No. 3;
1195-1201; 10.1021/acsenergylett.1c02762
- Yan, Ellen; Balgley, Renata; et el. (2022) Experimental
and Theoretical Comparison of Potential-dependent Methylation on
Chemically Exfoliated WS₂ and MoS₂; ACS Applied Materials &
Interfaces; Vol. 14; No. 7; 9744-9753; 10.1021/acsami.1c20949
- Fenwick, Aidan Q.; Welch, Alex J.; et el. (2022) Probing
the Catalytically Active Region in a Nanoporous Gold Gas Diffusion
Electrode for Highly Selective Carbon Dioxide Reduction; ACS Energy
Letters; Vol. 7; No. 2; 871-879; 10.1021/acsenergylett.1c02267
- Rao, Karun K.; Lai, Yungchieh; et el. (2022) Overcoming
Hurdles in Oxygen Evolution Catalyst Discovery via Codesign;
Chemistry of Materials; Vol. 34; No. 3; 899-910; 10.1021/acs.chemmater.1c04120
- Xie, Xulan; Zhang, Xiang; et el. (2022) Au-activated
N motifs in non-coherent cupric porphyrin metal organic frameworks for
promoting and stabilizing ethylene production; Nature
Communications; Vol. 13; Art. No. 63; PMCID PMC8763919; 10.1038/s41467-021-27768-6
- Kaiser, Waldemar; Carignano, Marcelo; et el. (2021) First-Principles
Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized
Gradient Approximation and Hybrid Functionals; Journal of Physical
Chemistry Letters; Vol. 12; No. 49; 11886-11893; 10.1021/acs.jpclett.1c03428
- Song, Jie; Kwon, Soonho; et el. (2021) Reaction
Mechanism and Strategy for Optimizing the Hydrogen Evolution Reaction on
Single-Layer 1T′ WSe₂ and WTe₂ Based on Grand Canonical Potential
Kinetics; ACS Applied Materials & Interfaces; Vol. 13; No. 46;
55611-55620; 10.1021/acsami.1c14234
- Sullivan, Ian; Goryachev, Andrey; et el. (2021) Coupling
electrochemical CO₂ conversion with CO₂ capture; Nature Catalysis;
Vol. 4; No. 11; 952-958; 10.1038/s41929-021-00699-7
- Lai, Yunchieh; Watkins, Nicholas B.; et el. (2021) Breaking
Scaling Relationships in CO₂ Reduction on Copper Alloys with Organic
Additives; ACS Central Science; Vol. 7; No. 10; 1756-1762; PMCID
PMC8554824; 10.1021/acscentsci.1c00860
- Palfey, William R.; Rossman, George R.; et el. (2021) Structure,
Energetics, and Spectra for the Oxygen Vacancy in Rutile: Prominence of
the Ti–Hₒ–Ti Bond; Journal of Physical Chemistry Letters; Vol. 12;
No. 41; 10175-10181; 10.1021/acs.jpclett.1c02850
- Kwon, Soonho; Kim, Youn-Geun; et el. (2021) Dramatic
Change in the Step Edges of the Cu(100) Electrocatalyst upon Exposure to
CO: Operando Observations by Electrochemical STM and Explanation Using
Quantum Mechanical Calculations; ACS Catalysis; Vol. 11; No. 19;
12068-12074; 10.1021/acscatal.1c02844
- Li, Mufan; Zhang, Bei; et el. (2021) Sulfur-doped
graphene anchoring of ultrafine Au₂₅ nanoclusters for
electrocatalysis; Nano Research; Vol. 14; No. 10; 3509-3513; 10.1007/s12274-021-3561-2
- Welch, Alex J.; Fenwick, Aidan Q.; et el. (2021) Operando
Local pH Measurement within Gas Diffusion Electrodes Performing
Electrochemical Carbon Dioxide Reduction; Journal of Physical
Chemistry C; Vol. 125; No. 38; 20896-20904; 10.1021/acs.jpcc.1c06265
- Richter, Matthias H.; Peterson, Elizabeth A.; et el. (2021) Band
Edge Energy Tuning through Electronic Character Hybridization in Ternary
Metal Vanadates; Chemistry of Materials; Vol. 33; No. 18; 7242-7253;
10.1021/acs.chemmater.1c01415
- Cheng, Wen-Hui; de la Calle, Alberto; et el. (2021) Hydrogen
from Sunlight and Water: A Side-by-Side Comparison between
Photoelectrochemical and Solar Thermochemical Water-Splitting; ACS
Energy Letters; Vol. 6; No. 9; 3096-3113; 10.1021/acsenergylett.1c00758
- Maliyov, Ivan; Park, Jinsoo; et el. (2021) Ab
initio electron dynamics in high electric fields: Accurate prediction of
velocity-field curves; Physical Review B; Vol. 104; No. 10; Art.
No. L100303; 10.1103/PhysRevB.104.L100303
- Chen, Di; Bai, Yiwei; et el. (2021) Automating
crystal-structure phase mapping by combining deep learning with
constraint reasoning; Nature Machine Intelligence; Vol. 3; No. 9;
812-822; 10.1038/s42256-021-00384-1