Fejes Toth, Katalin
- Godneeva, Baira and Ninova, Maria, et el. (2023) SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes; eLife; Vol. 12; RP89493; PMCID PMC10672805; 10.7554/elife.89493
- Luo, Yicheng and He, Peng, et el. (2023) Maternally inherited siRNAs initiate piRNA cluster formation; Molecular Cell; Vol. 83; No. 21; 3835-3851.e7; PMCID PMC10846595; 10.1016/j.molcel.2023.09.033
- Godneeva, Baira and Fejes Toth, Katalin, et el. (2023) Impact of Germline Depletion of Bonus on Chromatin State in Drosophila Ovaries; Cells; Vol. 12; No. 22; 2629; PMCID PMC10670193; 10.3390/cells12222629
- Ninova, Maria and Holmes, Hannah, et el. (2023) Pervasive SUMOylation of heterochromatin and piRNA pathway proteins; Cell Genomics; Vol. 3; No. 7; 100329; PMCID PMC10363806; 10.1016/j.xgen.2023.100329
- Ninova, Maria and Lomenick, Brett, et el. (2022) Pervasive SUMOylation of heterochromatin and piRNA pathway proteins; 10.1101/2022.08.15.504007
- Galton, Riley and Fejes-Tóth, Katalin, et el. (2022) Co-option of the piRNA pathway to regulate neural crest specification; Science Advances; Vol. 8; No. 32; Art. No. abn1441; 10.1126/sciadv.abn1441
- Luo, Yicheng and He, Peng, et el. (2022) Maternally inherited siRNAs initiate piRNA cluster formation; 10.1101/2022.02.08.479612
- Huang, Xiawei and Hu, Hongmiao, et el. (2021) Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex; Nature Communications; Vol. 12; Art. No. 4061; 10.1038/s41467-021-24351-x
- Galton, Riley and Fejes-Tóth, Katalin, et el. (2021) A somatic piRNA pathway regulates epithelial-to-mesenchymal transition of chick neural crest cells; 10.1101/2021.04.30.442165
- Ninova, Maria and Fejes Tóth, Katalin (2020) New players on the piRNA field; Nature Structural & Molecular Biology; Vol. 27; No. 9; 771-779; 10.1038/s41594-020-0484-7
- Ninova, Maria and Godneeva, Baira, et el. (2020) The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation; Molecular Cell; Vol. 77; No. 3; 571-585; PMCID PMC7007874; 10.1016/j.molcel.2019.09.033
- Ninova, Maria and Chen, Yung-Chia Ariel, et el. (2020) Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing; Molecular Cell; Vol. 77; No. 3; 556-570; PMCID PMC7007863; 10.1016/j.molcel.2019.11.012
- Ninova, Maria and Fejes Tóth, Katalin, et el. (2019) The control of gene expression and cell identity by H3K9 trimethylation; Development; Vol. 146; No. 19; Art. No. dev181180; PMCID PMC6803365; 10.1242/dev.181180
- Huang, Xiawei and Fejes Tóth, Katalin, et el. (2017) piRNA Biogenesis in Drosophila melanogaster; Trends in Genetics; Vol. 33; No. 11; 882-894; PMCID PMC5773129; 10.1016/j.tig.2017.09.002
- Rogers, Alicia K. and Situ, Kathy, et el. (2017) Zucchini-dependent piRNA processing is triggered by recruitment to the cytoplasmic processing machinery; Genes and Development; Vol. 31; No. 18; 1858-1869; PMCID PMC5695087; 10.1101/gad.303214.117
- Chen, Yung-Chia Ariel and Stuwe, Evelyn, et el. (2016) Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors; Molecular Cell; Vol. 63; No. 1; 97-109; PMCID PMC4980073; 10.1016/j.molcel.2016.05.010
- Fejes Tóth, Katalin and Pezic, Dubravka, et el. (2016) The piRNA Pathway Guards the Germline Genome Against Transposable Elements; ISBN 978-94-017-7415-4; Non-coding RNA and the Reproductive System; 51-77; PMCID PMC4991928; 10.1007/978-94-017-7417-8_4
- Marinov, Georgi K. and Wang, Jie, et el. (2015) Pitfalls of Mapping High-Throughput Sequencing Data to Repetitive Sequences: Piwi's Genomic Targets Still Not Identified; Developmental Cell; Vol. 32; No. 6; 765-771; PMCID PMC4494788; 10.1016/j.devcel.2015.01.013
- Le Thomas, Adrien and Stuwe, Evelyn, et el. (2014) Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing; Genes and Development; Vol. 28; No. 15; 1667-1680; PMCID PMC4117942; 10.1101/gad.245514.114
- Stuwe, Evelyn and Fejes Tóth, Katalin, et el. (2014) Small but sturdy: small RNAs in cellular memory and epigenetics; Genes and Development; Vol. 28; No. 5; 421-431; PMCID PMC3950340; 10.1101/gad.236414.113
- Le Thomas, Adrien and Fejes Tóth, Katalin, et el. (2014) To be or not to be a piRNA: genomic origin and processing of piRNAs; Genome Biology; Vol. 15; No. 1; Art. No. 204; PMCID PMC4053809; 10.1186/gb4154
- Le Thomas, Adrien and Rogers, Alicia K., et el. (2013) Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state; Genes and Development; Vol. 27; No. 4; 390-399; PMCID PMC3589556; 10.1101/gad.209841.112
- Djebali, Sarah and Mortazavi, Ali, et el. (2012) Landscape of transcription in human cells; Nature; Vol. 489; No. 7414; 101-108; PMCID PMC3684276; 10.1038/nature11233
- Marinov, Georgi K. and Wold, Barbara, et el. (2012) An integrated encyclopedia of DNA elements in the human genome; Nature; Vol. 489; No. 7414; 57-74; PMCID PMC4243026; 10.1038/nature11247
- Olovnikov, Ivan and Aravin, Alexei A., et el. (2012) Small RNA in the nucleus: the RNA-chromatin ping-pong; Current Opinion in Genetics and Development; Vol. 22; No. 2; 164-171; PMCID PMC3345048; 10.1016/j.gde.2012.01.002
- Caudron-Herger, Maïwen and Müller-Ott, Katharina, et el. (2011) Coding RNAs with a non-coding function: Maintenance of open chromatin structure; Nucleus; Vol. 2; No. 5; 410-424; 10.4161/nucl.2.5.17736
- Fejes-Tóth, Katalin and Sotirova, Vihra, et el. (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs; Nature; Vol. 457; No. 7232; 1028-1032; PMCID PMC2719882; 10.1038/nature07759
- Aravin, Alexei A. and Sachidanandam, Ravi, et el. (2008) A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA Methylation in Mice; Molecular Cell; Vol. 31; No. 6; 785-799; PMCID PMC2730041; 10.1016/j.molcel.2008.09.003
- Aravin, Alexei A. and Sachidanandam, Ravi, et el. (2007) Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control; Science; Vol. 316; No. 5825; 744-747; 10.1126/science.1142612
- Görisch, Sabine M. and Wachsmuth, Malte, et el. (2005) Histone acetylation increases chromatin accessibility; Journal of Cell Science; Vol. 118; No. 24; 5825-5834; 10.1242/jcs.02689
- Kepert, J. Felix and Mazurkiewicz, Jacek, et el. (2005) NAP1 Modulates Binding of Linker Histone H1 to Chromatin and Induces an Extended Chromatin Fiber Conformation; Journal of Biological Chemistry; Vol. 280; No. 40; 34063-34072; 10.1074/jbc.m507322200
- Lutzmann, Malik and Kunze, Ruth, et el. (2005) Reconstitution of Nup157 and Nup145N into the Nup84 Complex; Journal of Biological Chemistry; Vol. 280; No. 18; 18442-18451; 10.1074/jbc.m412787200
- Fejes Tóth, Katalin and Mazurkiewicz, Jacek, et el. (2005) Association States of Nucleosome Assembly Protein 1 and Its Complexes with Histones; Journal of Biological Chemistry; Vol. 280; No. 16; 15690-15699; 10.1074/jbc.m413329200
- Fejes Tóth, Katalin and Knoch, Tobias A., et el. (2004) Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin; Journal of Cell Science; Vol. 117; No. 18; 4277-4287; 10.1242/jcs.01293
- Kepert, Jochen Felix and Fejes Tóth, Katalin, et el. (2003) Conformation of Reconstituted Mononucleosomes and Effect of Linker Histone H1 Binding Studied by Scanning Force Microscopy; Biophysical Journal; Vol. 85; No. 6; 4012-4022; PMCID PMC1303702; 10.1016/s0006-3495(03)74815-2