Rothemund, Paul
Maingi, Vishal and Zhang, Zhao, et el. (2023) Digital nanoreactors for control over absolute stoichiometry and spatiotemporal behavior of receptors within lipid bilayers ; 10.1101/2022.10.04.509789
Maingi, Vishal and Zhang, Zhao, et el. (2023) Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers ; Nature Communications; Vol. 14; Art. No. 1532; PMCID PMC10027858; 10.1038/s41467-023-36996-x
Ross, Tyler D. and Osmanović, Dino, et el. (2022) Ray Optics for Gliders ; ACS Nano; Vol. 16; No. 10; 16191-16200; 10.1021/acsnano.2c05015
Ross, Tyler D. and Osmanović, Dino, et el. (2021) Snell's Law for Swimmers ; 10.48550/arXiv.2109.06360
Shetty, Rishabh M. and Brady, Sarah R., et el. (2021) Bench-Top Fabrication of Single-Molecule Nanoarrays by DNA Origami Placement ; ACS Nano; Vol. 15; No. 7; 11441-11450; PMCID PMC9701110; 10.1021/acsnano.1c01150
Geary, Cody and Grossi, Guido, et el. (2021) RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds ; Nature Chemistry; Vol. 13; No. 6; 549-558; PMCID PMC7610888; 10.1038/s41557-021-00679-1
Gopinath, Ashwin and Thachuk, Chris, et el. (2021) Absolute and arbitrary orientation of single-molecule shapes ; Science; Vol. 371; No. 6531; Art. No. eabd6179; 10.1126/science.abd6179
Maingi, Vishal and Rothemund, Paul W. K. (2021) Properties of DNA- and Protein-Scaffolded Lipid Nanodiscs ; ACS Nano; Vol. 15; No. 1; 751-764; 10.1021/acsnano.0c07128
Liu, Di and Geary, Cody, et el. (2020) Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures ; Nature Chemistry; Vol. 12; No. 3; 249-259; 10.1038/s41557-019-0406-7
Bathe, Mark and Rothemund, Paul W. K. (2017) DNA Nanotechnology: A foundation for Programmable Nanoscale Materials ; MRS Bulletin; Vol. 42; No. 12; 882-888; 10.1557/mrs.2017.279
Mitskovets, Anna and Gopinath, Ashwin, et el. (2016) Quantum dots coupled to chip-based dielectric resonators via DNA origami mediated assembly ; ISBN 9781510602298; Nanophotonic Materials XIII; Art. No. 99190H; 10.1117/12.2238451
Gopinath, Ashwin and Miyazono, Evan, et el. (2016) Engineering and mapping nanocavity emission via precision placement of DNA origami ; Nature; Vol. 535; No. 7612; 401-405; 10.1038/nature18287
Hsiao, Victoria and Hori, Yutaka, et el. (2016) A population-based temporal logic gate for timing and recording chemical events ; Molecular Systems Biology; Vol. 12; No. 5; Art. No. 869; PMCID PMC5289221; 10.15252/msb.20156663
Gopinath, Ashwin and Rothemund, Paul W. K. (2014) Optimized Assembly and Covalent Coupling of Single-Molecule DNA Origami Nanoarrays ; ACS Nano; Vol. 8; No. 12; 12030-12040; 10.1021/nn506014s
Woo, Sungwook and Rothemund, Paul W. K. (2014) Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion ; Nature Communications; Vol. 5; Art. No. 4889; 10.1038/ncomms5889
Geary, Cody and Rothemund, Paul W. K., et el. (2014) A single-stranded architecture for cotranscriptional folding of RNA nanostructures ; Science; Vol. 345; No. 6198; 799-804; 10.1126/science.1253920
Rothemund, Paul W. K. and Andersen, Ebbe Sloth (2012) The importance of being modular ; Nature; Vol. 485; No. 7400; 584-585; 10.1038/485584a
Rothemund, Paul W. K. (2012) Beyond Watson and Crick: Programming DNA Self-assembly for Nanofabrication ; ISBN 978-1-4673-1122-9; IEEE-NEMS 2012: 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems; 1-2; 10.1109/NEMS.2012.6196703
Woo, Sungwook and Rothemund, Paul W. K. (2011) Programmable molecular recognition based on the geometry of DNA nanostructures ; Nature Chemistry; Vol. 3; No. 8; 620-627; 10.1038/NCHEM.1070
Maune, Hareem T. and Han, Si-ping, et el. (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates ; Nature Nanotechnology; Vol. 5; No. 1; 61-66; 10.1038/nnano.2009.311
Kershner, Ryan J. and Bozano, Luisa D., et el. (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces ; Nature Nanotechnology; Vol. 4; No. 9; 557-561; 10.1038/NNANO.2009.220
Barish, Robert D. and Schulman, Rebecca, et el. (2009) An information-bearing seed for nucleating algorithmic self-assembly ; Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 15; 6054-6059; PMCID PMC2660060; 10.1073/pnas.0808736106
Venkataraman, Suvir and Dirks, Robert M., et el. (2007) An autonomous polymerization motor powered by DNA hybridization ; Nature Nanotechnology; Vol. 2; No. 8; 490-494; 10.1038/nnano.2007.225
O'Neill, Patrick and Rothemund, Paul W. K., et el. (2006) Sturdier DNA nanotubes via ligation ; Nano Letters; Vol. 6; No. 7; 1379-1383; 10.1021/nl0603505
Rothemund, Paul W. K. (2006) Folding DNA to create nanoscale shapes and patterns ; Nature; Vol. 440; No. 7082; 297-302; 10.1038/nature04586
Rothemund, Paul W. K. (2006) Scaffolded DNA origami: from generalized multi-crossovers to polygonal networks ; ISBN 9783540302964; Nanotechnology: Science and Computation; 3-21; 10.1007/3-540-30296-4_1
Barish, Robert D. and Rothemund, Paul W. K., et el. (2005) Two computational primitives for algorithmic self-assembly: Copying and counting ; Nano Letters; Vol. 5; No. 12; 2586-2592; 10.1021/nl052038l
Rothemund, Paul W. K. and Ekani-Nkodo, Axel, et el. (2004) Design and characterization of programmable DNA nanotubes ; Journal of the American Chemical Society; Vol. 126; No. 50; 16344-16352; 10.1021/ja044319l
Rothemund, Paul W. K. and Papadakis, Nick, et el. (2004) Algorithmic Self-Assembly of DNA Sierpinski Triangles ; PLoS Biology; Vol. 2; No. 12; 2041-2053; PMCID PMC534809; 10.1371/journal.pbio.0020424
Cook, Matthew and Rothemund, Paul W. K., et el. (2004) Self-assembled circuit patterns ; ISBN 3-540-20930-1; DNA Computing; 91-107; 10.1007/978-3-540-24628-2_11
Braich, Ravinderjit S. and Chelyapov, Nickolas, et el. (2002) Solution of a 20-Variable 3-SAT Problem on a DNA Computer ; Science; Vol. 296; No. 5567; 499-502; 10.1126/science.1069528
Adleman, Leonard and Cheng, Qi, et el. (2002) Combinatorial optimization problems in self-assembly ; ISBN 1-58113-495-9; Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, Montreal, Quebec, Canada, May 19-21, 2002 (STOC '02); 23-32
Rothemund, Paul W. K. and Winfree, Erik (2000) The program-size complexity of self-assembled squares ; ISBN 1-58113-184-4; STOC '00 Proceedings of the thirty-second annual ACM symposium on Theory of computing; 459-468; 10.1145/335305.335358
Rothemund, Paul W. K. (2000) Using lateral capillary forces to compute by self-assembly ; Proceedings of the National Academy of Sciences of the United States of America; Vol. 97; No. 3; 984-989; PMCID PMC15495; 10.1073/pnas.97.3.984
Adleman, Leonard M. and Rothemund, Paul W. K., et el. (1999) On Applying Molecular Computation to the Data Encryption Standard ; Journal of Computational Biology; Vol. 6; No. 1; 53-63; 10.1089/cmb.1999.6.53
Roweis, Sam and Winfree, Erik, et el. (1998) A sticker-based model for DNA computation ; Journal of Computational Biology; Vol. 5; No. 4; 615-629; 10.1089/cmb.1998.5.615
Rothemund, Paul W. K. (1996) A DNA and restriction enzyme implementation of Turing Machines ; ISBN 0821805185; DNA based computers; 75-120