Roukes, Michael
- Pang, Marion and Jones, Jeff J., et el. (2024) Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples; Journal of Proteome Research; 10.1021/acs.jproteome.4c00062
- Neumann, Adam P. and Gomez, Alfredo, et el. (2024) Nanomechanical mass measurements through feature-based time series clustering; Review of Scientific Instruments; Vol. 95; No. 2; 10.1063/5.0176303
- Sader, John E. and Stassi, Stefano, et el. (2023) Effect of intramodal and intermodal nonlinearities on the flexural resonant frequencies of cantilevered beams; Physical Review B; Vol. 108; No. 22; 224303; 10.1103/physrevb.108.224303
- Jones, Jeff and MacKrell, Elliot J., et el. (2023) Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization; BMC Bioinformatics; Vol. 24; Art. No. 239; PMCID PMC10246047; 10.1186/s12859-023-05360-7
- Katti, Raj and Arora, Harpreet Singh, et el. (2023) Hot Carrier Thermalization and Josephson Inductance Thermometry in a Graphene-Based Microwave Circuit; Nano Letters; Vol. 23; No. 10; 4136-4141; 10.1021/acs.nanolett.2c04791
- Tjahjono, Nikki and Jin, Yihan, et el. (2022) Letting the little light of mind shine: Advances and future directions in neurochemical detection; Neuroscience Research; Vol. 179; 65-78; PMCID PMC9508992; 10.1016/j.neures.2021.11.012
- Sacher, Wesley D. and Chen, Fu-Der, et el. (2022) Optical phased array neural probes for beam-steering in brain tissue; Optics Letters; Vol. 47; No. 5; 1073-1076; 10.1364/OL.441609
- Wimsatt, Gregory and Saira, Olli-Pentti, et el. (2021) Harnessing fluctuations in thermodynamic computing via time-reversal symmetries; Physical Review Research; Vol. 3; No. 3; Art. No. 033115; 10.1103/physrevresearch.3.033115
- Sacher, Wesley D. and Chen, Fu-Der, et el. (2021) Implantable photonic neural probes for light-sheet fluorescence brain imaging; Neurophotonics; Vol. 8; No. 2; Art. No. 025003; PMCID PMC8059764; 10.1117/1.NPh.8.2.025003
- Moreaux, Laurent C. and Yatsenko, Dimitri, et el. (2020) Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity —at Depth and in Real Time; Neuron; Vol. 108; No. 1; 66-92; PMCID PMC8061790; 10.1016/j.neuron.2020.09.043
- Choi, Jaebin and Taal, Adriaan J., et el. (2020) Fully Integrated Time-Gated 3D Fluorescence Imager for Deep Neural Imaging; IEEE Transactions on Biomedical Circuits and Systems; Vol. 14; No. 4; 636-645; 10.1109/tbcas.2020.3008513
- Saira, Olli-Pentti and Matheny, Matthew H., et el. (2020) Nonequilibrium thermodynamics of erasure with superconducting flux logic; Physical Review Research; Vol. 2; No. 1; Art. No. 013249; 10.1103/PhysRevResearch.2.013249
- Saira, Olli-Pentti and Matheny, Matthew H., et el. (2020) Modification of electron-phonon coupling by micromachining and suspension; Journal of Applied Physics; Vol. 127; No. 2; Art. No. 024307; 10.1063/1.5132948
- Sacher, Wesley D. and Luo, Xianshu, et el. (2019) Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers; Optics Express; Vol. 27; No. 26; 37400-37418; PMCID PMC7046040; 10.1364/oe.27.037400
- Choi, Jaebin and Taal, Adriaan J., et el. (2019) A 512-Pixel, 51-kHz-Frame-Rate, Dual-Shank, Lens-Less, Filter-Less Single-Photon Avalanche Diode CMOS Neural Imaging Probe; IEEE Journal of Solid-State Circuits; Vol. 54; No. 11; 2957-2968; 10.1109/jssc.2019.2941529
- Dykman, M. I. and Rastelli, Gianluca, et el. (2019) Resonantly Induced Friction and Frequency Combs in Driven Nanomechanical Systems; Physical Review Letters; Vol. 122; No. 25; Art. No. 254301; 10.1103/physrevlett.122.254301
- Whiting, Joshua J. and Myers, Edward, et el. (2019) A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph; Lab on a Chip; Vol. 19; No. 9; 1633-1643; 10.1039/c9lc00027e
- Matheny, Matthew H. and Emenheiser, Jeffrey, et el. (2019) Exotic states in a simple network of nanoelectromechanical oscillators; Science; Vol. 363; No. 6431; Art. No. eaav7932; 10.1126/science.aav7932
- Wang, Hongxia and Dewell, Richard B., et el. (2018) Optogenetic manipulation of medullary neurons in the locust optic lobe; Journal of Neurophysiology; Vol. 120; No. 4; 2049-2058; PMCID PMC6230808; 10.1152/jn.00356.2018
- Sage, Eric and Sansa, Marc, et el. (2018) Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators; Nature Communications; Vol. 9; Art. No. 3283; PMCID PMC6095856; 10.1038/s41467-018-05783-4
- Sader, John E. and Hanay, M. Selim, et el. (2018) Mass spectrometry using nanomechanical systems: beyond the point-mass approximation; Nano Letters; Vol. 18; No. 3; 1608-1614; 10.1021/acs.nanolett.7b04301
- Laurent, Ludovic and Yon, Jean-Jacques, et el. (2018) 12−μm-Pitch Electromechanical Resonator for Thermal Sensing; Physical Review Applied; Vol. 9; No. 2; Art. No. 024016; 10.1103/PhysRevApplied.9.024016
- Fon, Warren and Matheny, Matthew H., et el. (2017) Complex dynamical networks constructed with fully controllable nonlinear nanomechanical oscillators; Nano Letters; Vol. 17; No. 10; 5977-5983; 10.1021/acs.nanolett.7b02026
- Segev, Eran and Reimer, Jacob, et el. (2017) Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics; Neurophotonics; Vol. 4; No. 1; Art. No. 011002; PMCID PMC5136672; 10.1117/1.NPh.4.1.011002
- Atalaya, Juan and Kenny, Thomas W., et el. (2016) Nonlinear damping and dephasing in nanomechanical systems; Physical Review B; Vol. 94; No. 19; Art. No. 195440; 10.1103/PhysRevB.94.195440
- Rios, Gustavo and Lubenov, Evgueniy V., et el. (2016) Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity; Nano Letters; Vol. 16; No. 11; 6857-6862; PMCID PMC5108031; 10.1021/acs.nanolett.6b02673
- Sansa, Marc and Sage, Eric, et el. (2016) Frequency fluctuations in silicon nanoresonators; Nature Nanotechnology; Vol. 11; No. 6; 552-558; PMCID PMC4892353; 10.1038/NNANO.2016.19
- Alivisatos, A. Paul and Chun, Miyoung, et el. (2015) A National Network of Neurotechnology Centers for the BRAIN Initiative; Neuron; Vol. 88; No. 3; 445-448; PMCID PMC5283530; 10.1016/j.neuron.2015.10.015
- Hanay, M. Selim and Kelber, Scott I., et el. (2015) Inertial Imaging with Nanomechanical Systems; Nature Nanotechnology; Vol. 10; No. 4; 339-344; PMCID PMC5283574; 10.1038/nnano.2015.32
- Sage, Eric and Brenac, Ariel, et el. (2015) Neutral particle mass spectrometry with nanomechanical systems; Nature Communications; Vol. 6; No. 3; Art. No. 6482; PMCID PMC4366497; 10.1038/ncomms7482
- McCaig, Heather C. and Myers, Ed, et el. (2014) Vapor Sensing Characteristics of Nanoelectromechanical Chemical Sensors Functionalized Using Surface-Initiated Polymerization; Nano Letters; Vol. 14; No. 7; 3728-3732; PMCID PMC5297368; 10.1021/nl500475b
- Bullard, Elizabeth C. and Li, Jianchang, et el. (2014) Dynamic Similarity of Oscillatory Flows Induced by Nanomechanical Resonators; Physical Review Letters; Vol. 112; No. 1; 015501; 10.1103/physrevlett.112.015501
- Matheny, Matthew H. and Grau, Matt, et el. (2014) Phase Synchronization of Two Anharmonic Nanomechanical Oscillators; Physical Review Letters; Vol. 112; No. 1; Art. No. 014101; 10.1103/PhysRevLett.112.014101
- Bullard, Elizabeth C. and Li, Jianchang, et el. (2014) Dynamic Similarity of Oscillatory Flows Induced by Nanomechanical Resonators; Physical Review Letters; Vol. 112; No. 1; Art. No. 015501; 10.1103/PhysRevLett.112.015501
- Villanueva, L. G. and Kenig, E., et el. (2013) Surpassing Fundamental Limits of Oscillators Using Nonlinear Resonators; Physical Review Letters; Vol. 110; No. 17; Art. No. 177208; PMCID PMC3839326; 10.1103/PhysRevLett.110.177208
- Zhang, X. C. and Myers, E. B., et el. (2013) Nanomechanical Torsional Resonators for Frequency-Shift Infrared Thermal Sensing; Nano Letters; Vol. 13; No. 4; 1528-1534; 10.1021/nl304687p
- Zhang, X. C. and Myers, E. B., et el. (2013) Nanomechanical Torsional Resonators for Frequency-Shift Infrared Thermal Sensing; Nano Letters; Vol. 13; No. 4; 1528-1534; 10.1021/nl304687p
- Matheny, M. H. and Villanueva, L. G., et el. (2013) Nonlinear Mode-Coupling in Nanomechanical Systems; Nano Letters; Vol. 13; No. 4; 1622-1626; 10.1021/nl400070e
- Matheny, M. H. and Villanueva, L. G., et el. (2013) Nonlinear Mode-Coupling in Nanomechanical Systems; Nano Letters; Vol. 13; No. 4; 1622-1626; PMCID PMC3839314; 10.1021/nl400070e
- Alivisatos, A. Paul and Scherer, Axel, et el. (2013) Nanotools for Neuroscience and Brain Activity Mapping; ACS Nano; Vol. 7; No. 3; 1850-1866; PMCID PMC3665747; 10.1021/nn4012847
- Alivisatos, A. Paul and Chun, Miyoung, et el. (2013) The Brain Activity Map; Science; Vol. 339; No. 6125; 1284-1285; PMCID PMC3722427; 10.1126/science.1236939
- Villanueva, L. G. and Karabalin, R. B., et el. (2013) Nonlinearity in nanomechanical cantilevers; Physical Review B; Vol. 87; No. 2; Art. No. 024304; 10.1103/PhysRevB.87.024304
- Villanueva, L. G. and Karabalin, R. B., et el. (2013) Nonlinearity in nanomechanical cantilevers; Physical Review B; Vol. 87; No. 2; 024304; 10.1103/physrevb.87.024304
- Kenig, Eyal and Cross, M. C., et el. (2012) Optimal operating points of oscillators using nonlinear resonators; Physical Review E; Vol. 86; No. 5; Art. No. 056207; PMCID PMC3839322; 10.1103/PhysRevE.86.056207
- Hanay, M. S. and Kelber, S., et el. (2012) Single-protein nanomechanical mass spectrometry in real time; Nature Nanotechnology; Vol. 7; No. 9; 602-608; PMCID PMC3435450; 10.1038/nnano.2012.119
- Kenig, Eyal and Cross, M. C., et el. (2012) Passive Phase Noise Cancellation Scheme; Physical Review Letters; Vol. 108; No. 26; Art. No. 264102; PMCID PMC3839313; 10.1103/PhysRevLett.108.264102
- Alivisatos, A. Paul and Chun, Miyoung, et el. (2012) The Brain Activity Map Project and the Challenge of Functional Connectomics; Neuron; Vol. 74; No. 6; 970-974; PMCID PMC3597383; 10.1016/j.neuron.2012.06.006
- Karabalin, R. B. and Villanueva, L. G., et el. (2012) Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams; Physical Review Letters; Vol. 108; No. 23; 236101; 10.1103/physrevlett.108.236101
- Karabalin, R. B. and Villanueva, L. G., et el. (2012) Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams; Physical Review Letters; Vol. 108; No. 23; Art. No. 236101; PMCID PMC3839317; 10.1103/PhysRevLett.108.236101
- Bargatin, I. and Myers, E. B., et el. (2012) Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications; Nano Letters; Vol. 12; No. 3; 1269-1274; PMCID PMC3839335; 10.1021/nl2037479
- Fanget, S. and Hentz, S., et el. (2011) Gas sensors based on gravimetric detection—A review; Sensors and Actuators B: Chemical; Vol. 160; No. 1; 804-821; 10.1016/j.snb.2011.08.066
- Villanueva, L. Guillermo and Karabalin, Rassul B., et el. (2011) A Nanoscale Parametric Feedback Oscillator; Nano Letters; Vol. 11; No. 11; 5054-5059; 10.1021/nl2031162
- Maizelis, Z. A. and Roukes, M. L., et el. (2011) Detecting and characterizing frequency fluctuations of vibrational modes; Physical Review B; Vol. 84; No. 14; Art. No. 144301; 10.1103/PhysRevB.84.144301
- Ivaldi, P. and Abergel, J., et el. (2011) 50 nm thick AlN film-based piezoelectric
cantilevers for gravimetric detection; Journal of Micromechanics and Microengineering; Vol. 21; No. 8; Art. No. 085023; 10.1088/0960-1317/21/8/085023
- Yang, Y. T. and Callegari, C., et el. (2011) Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems; Nano Letters; Vol. 11; No. 4; 1753-1759; PMCID PMC3839310; 10.1021/nl2003158
- Arlett, J. L. and Myers, E. B., et el. (2011) Comparative advantages of mechanical biosensors; Nature Nanotechnology; Vol. 6; No. 4; 203-215; PMCID PMC3839312; 10.1038/nnano.2011.44
- Karabalin, R. B. and Lifshitz, Ron, et el. (2011) Signal Amplification by Sensitive Control of Bifurcation Topology; Physical Review Letters; Vol. 106; No. 9; Art. No. 094102; 10.1103/PhysRevLett.106.094102
- Karabalin, R. B. and Masmanidis, S. C., et el. (2010) Efficient parametric amplification in high and very high frequency piezoelectric nanoelectromechanical systems; Applied Physics Letters; Vol. 97; No. 18; 183101; 10.1063/1.3505500
- Arlett, J. L. and Roukes, M. L. (2010) Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators; Journal of Applied Physics; Vol. 108; No. 8; Art. No. 084701; 10.1063/1.3475151
- Li, Mo and Myers, E. B., et el. (2010) Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis; Nano Letters; Vol. 10; No. 10; 3899-3903; PMCID PMC3839305; 10.1021/nl101586s
- Suh, Junho and LaHaye, Matthew D., et el. (2010) Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator; Nano Letters; Vol. 10; No. 10; 3990-3994; 10.1021/nl101844r
- Feng, X. L. and Matheny, M. H., et el. (2010) Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires; Nano Letters; Vol. 10; No. 8; 2891-2896; 10.1021/nl1009734
- Sadek, Akram S. and Karabalin, Rassul B., et el. (2010) Wiring Nanoscale Biosensors with Piezoelectric Nanomechanical Resonators; Nano Letters; Vol. 10; No. 5; 1769-1773; 10.1021/nl100245z
- Lee, Wonhee and Fon, Warren, et el. (2009) High-sensitivity microfluidic calorimeters for biological and chemical applications; Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 36; 15225-15230; PMCID PMC2741232; 10.1073/pnas.0901447106
- Karabalin, R. B. and Matheny, M. H., et el. (2009) Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films; Applied Physics Letters; Vol. 95; No. 10; Art. No. 103111; 10.1063/1.3216586
- Karabalin, R. B. and Feng, X. L., et el. (2009) Parametric Nanomechanical Amplification at Very High Frequency; Nano Letters; Vol. 9; No. 9; 3116-3123; 10.1021/nl901057c
- Naik, A. K. and Hanay, M. S., et el. (2009) Towards single-molecule nanomechanical mass spectrometry; Nature Nanotechnology; Vol. 4; No. 7; 445-450; PMCID PMC3846395; 10.1038/nnano.2009.152
- Du, Jiangang and Roukes, Michael L., et el. (2009) Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates; Journal of Micromechanics and Microengineering; Vol. 19; No. 7; 075008; 10.1088/0960-1317/19/7/075008
- LaHaye, M. D. and Suh, J., et el. (2009) Nanomechanical measurements of a superconducting qubit; Nature; Vol. 459; No. 7249; 960-964; 10.1038/nature08093
- Karabalin, R. B. and Cross, M. C., et el. (2009) Nonlinear dynamics and chaos in two coupled nanomechanical resonators; Physical Review B; Vol. 79; No. 16; 165309; 10.1103/PhysRevB.79.165309
- Du, Jiangang and Riedel-Kruse, Ingmar H., et el. (2008) High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays; Journal of Neurophysiology; Vol. 101; No. 3; 1671-1678; 10.1152/jn.90992.2008
- Feng, X. L. and White, C. J., et el. (2008) A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator; Nature Nanotechnology; Vol. 3; No. 6; 342-346; 10.1038/nnano.2008.125
- He, Rongrui and Feng, X. L., et el. (2008) Self-Transducing Silicon Nanowire Electromechanical Systems at Room Temperature; Nano Letters; Vol. 8; No. 6; 1756-1761; 10.1021/nl801071w
- Kozinsky, I. and Postma, H. W. Ch., et el. (2007) Basins of Attraction of a Nonlinear Nanomechanical Resonator; Physical Review Letters; Vol. 99; No. 20; Art. No. 207201; 10.1103/PhysRevLett.99.207201
- Masmanidis, Sotiris C. and Karabalin, Rassul B., et el. (2007) Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation; Science; Vol. 317; No. 5839; 780-783; 10.1126/science.1144793
- Feng, X. L. and He, Rongrui, et el. (2007) Very High Frequency Silicon Nanowire Electromechanical Resonators; Nano Letters; Vol. 7; No. 7; 1953-1959; 10.1021/nl0706695
- Honolka, J. and Masmanidis, S., et el. (2007) Magnetotransport properties of strained Ga0.95Mn0.05As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory; Physical Review B; Vol. 75; No. 24; Art. No. 245310; 10.1103/PhysRevB.75.245310
- Tang, H. X. and Roukes, M. L. (2007) Magnetotransport and magnetocrystalline anisotropy in Ga1-xMnxAs epilayers; Journal of Physics: Condensed Matter; Vol. 19; No. 16; Art. No. 165206; 10.1088/0953-8984/19/16/165206
- Bargatin, I. and Kozinsky, I., et el. (2007) Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators; Applied Physics Letters; Vol. 90; No. 9; Art. No. 093116; 10.1063/1.2709620
- Li, Mo and Tang, H. X., et el. (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications; Nature Nanotechnology; Vol. 2; No. 2; 114-120; 10.1038/nnano.2006.208
- Roukes, Michael (2006) Quantum physics: Observing and the observed; Nature; Vol. 443; No. 7108; 154-155; 10.1038/443154a
- Tang, H. X. and Kawakami, R. K., et el. (2006) Propagation dynamics of individual domain walls in Ga1–xMnxAs microdevices; Physical Review B; Vol. 74; No. 4; Art. No. 041310(R); 10.1103/PhysRevB.74.041310
- Kozinsky, I. and Postma, H. W. Ch., et el. (2006) Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators; Applied Physics Letters; Vol. 88; No. 25; Art. No. 253101; 10.1063/1.2209211
- Urban, R. and Putilin, A., et el. (2006) Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy; Physical Review B; Vol. 73; No. 21; Art. No. 212410; 10.1103/PhysRevB.73.212410
- Arlett, J. L. and Maloney, J. R., et el. (2006) Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution; Nano Letters; Vol. 6; No. 5; 1000-1006; 10.1021/nl060275y
- Yang, Y. T. and Callegari, C., et el. (2006) Zeptogram-Scale Nanomechanical Mass Sensing; Nano Letters; Vol. 6; No. 4; 583-586; 10.1021/nl052134m
- Canaria, Christie A. and So, Jonathan, et el. (2006) Formation and removal of alkylthiolate self-assembled monolayers on gold in aqueous solutions; Lab on a Chip; Vol. 6; No. 2; 289-295; 10.1039/b510661c
- Schwab, K. C. and Blencowe, M. P., et el. (2005) Comment on "Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators"; Physical Review Letters; Vol. 95; No. 24; Art. no. 248901; 10.1103/PhysRevLett.95.248901
- Huang, X. M. H. and Feng, X. L., et el. (2005) VHF, UHF and microwave frequency nanomechanical resonators; New Journal of Physics; Vol. 7; No. 247; 10.1088/1367-2630/7/1/247
- Masmanidis, S. C. and Tang, H. X., et el. (2005) Nanomechanical Measurement of Magnetostriction and Magnetic Anisotropy in (Ga,Mn)As; Physical Review Letters; Vol. 95; No. 18; Art. no. 187206; 10.1103/PhysRevLett.95.187206
- Fon, W. Chung and Schwab, Keith C., et el. (2005) Nanoscale, Phonon-Coupled Calorimetry with Sub-Attojoule/Kelvin Resolution; Nano Letters; Vol. 5; No. 10; 1968-1971; 10.1021/nl051345o
- Schwab, Keith C. and Roukes, Michael L. (2005) Putting mechanics into quantum mechanics; Physics Today; Vol. 58; No. 7; 36-42; 10.1063/1.2012461
- Ekinci, K. L. and Roukes, M. L. (2005) Nanoelectromechanical systems; Review of Scientific Instruments; Vol. 76; No. 6; Art. No. 061101; 10.1063/1.1927327
- Postma, H. W. Ch. and Kozinsky, I., et el. (2005) Dynamic range of nanotube- and nanowire-based electromechanical systems; Applied Physics Letters; Vol. 86; No. 22; Art. No. 223105; 10.1063/1.1929098
- Bargatin, I. and Myers, E. B., et el. (2005) Sensitive detection of nanomechanical motion using piezoresistive signal downmixing; Applied Physics Letters; Vol. 86; No. 13; Art. no. 133109; 10.1063/1.1896103
- Honolka, J. and Masmanidis, S., et el. (2005) Domain-wall dynamics at micropatterned constrictions in ferromagnetic (Ga,Mn)As epilayers; Journal of Applied Physics; Vol. 97; No. 6; Art. No. 063903; 10.1063/1.1861512
- Tang, Hongxing and Roukes, Michael L. (2004) Electrical transport across an individual magnetic domain wall in (Ga,Mn)As microdevices; Physical Review B; Vol. 70; No. 20; Art. No. 205213; 10.1103/PhysRevB.70.205213
- Santamore, D. H. and Goan, Hsi-Sheng, et el. (2004) Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator; Physical Review A; Vol. 70; No. 5; Art. No. 052105; 10.1103/PhysRevA.70.052105
- Tang, H. X. and Masmanidis, S., et el. (2004) Negative intrinsic resistivity of an individual domain wall in epitaxial (Ga,Mn)As microdevices; Nature; Vol. 431; No. 7004; 52-56; 10.1038/nature02809
- Ekinci, K. L. and Huang, X. M. H., et el. (2004) Ultrasensitive nanoelectromechanical mass detection; Applied Physics Letters; Vol. 84; No. 22; 4469-4471; 10.1063/1.1755417
- Ekinci, K. L. and Yang, Y. T., et el. (2004) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems; Journal of Applied Physics; Vol. 95; No. 3; 2682-2689; 10.1063/1.1642738
- Bargatin, Igor and Roukes, M. L. (2003) Nanomechanical Analog of a Laser: Amplification of Mechanical Oscillations by Stimulated Zeeman Transitions; Physical Review Letters; Vol. 91; No. 13; Art. No. 138302; 10.1103/PhysRevLett.91.138302
- Husain, A. and Hone, J., et el. (2003) Nanowire-based very-high-frequency electromechanical resonator; Applied Physics Letters; Vol. 83; No. 6; 1240-1242; 10.1063/1.1601311
- Hammel, P. Chris and Pelekhov, Denis V., et el. (2003) The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging; Proceedings of the IEEE; Vol. 91; No. 5; 789-798; 10.1109/JPROC.2003.811797
- Tang, H. X. and Kawakami, R. K., et el. (2003) Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices; Physical Review Letters; Vol. 90; No. 10; Art. No. 107201; 10.1103/PhysRevLett.90.107201
- Worlock, John M. and Roukes, Michael L. (2003) Applied physics: Son et lumière; Nature; Vol. 421; No. 6925; 802-803; 10.1038/421802a
- Xue, Ming Henry Huang and Zorman, Christian A., et el. (2003) Nanodevice motion at microwave frequencies; Nature; Vol. 421; No. 6922; 496; 10.1038/421496a
- Buks, Eyal and Roukes, Michael L. (2002) Electrically tunable collective response in a coupled micromechanical array; Journal of Microelectromechanical Systems; Vol. 11; No. 6; 802-807; 10.1109/JMEMS.2002.805056
- Tang, H. X. and Huang, X. M. H., et el. (2002) Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems; Applied Physics Letters; Vol. 81; No. 20; 3879-3881; 10.1063/1.1516237
- Ekinci, K. L. and Yang, Y. T., et el. (2002) Balanced electronic detection of displacement in nanoelectromechanical systems; Applied Physics Letters; Vol. 81; No. 12; 2253-2255; 10.1063/1.1507833
- Buks, Eyal and Roukes, Michael L. (2002) Quantum physics: Casimir force changes sign; Nature; Vol. 419; No. 6903; 119-120; 10.1038/419119a
- Cleland, A. N. and Roukes, M. L. (2002) Noise processes in nanomechanical resonators; Journal of Applied Physics; Vol. 92; No. 5; 2758-2769; 10.1063/1.1499745
- Mohanty, P. and Harrington, D. A., et el. (2002) Intrinsic dissipation in high-frequency micromechanical resonators; Physical Review B; Vol. 66; No. 8; Art. No. 085416; 10.1103/PhysRevB.66.085416
- Fon, W. and Schwab, K. C., et el. (2002) Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K; Physical Review B; Vol. 66; No. 4; Art. No. 045302; 10.1103/PhysRevB.66.045302
- Suter, A. and Pelekhov, D. V., et el. (2002) Probe–Sample Coupling in the Magnetic Resonance Force Microscope; Journal of Magnetic Resonance; Vol. 154; No. 2; 210-227; 10.1006/jmre.2001.2472
- Wolf, S. A. and Awschalom, D. D., et el. (2001) Spintronics: A Spin-Based Electronics Vision for the Future; Science; Vol. 294; No. 5546; 1488-1495; 10.1126/science.1065389
- Roukes, Michael (2001) Plenty of Room Indeed; Scientific American; Vol. 285; No. 3; 48-57
- Roukes, Michael L. (2001) Electronics in a spin; Nature; Vol. 411; No. 6839; 747-748; 10.1038/35081213
- Roukes, Michael (2001) Nanoelectromechanical systems face the future; Physics World; Vol. 14; No. 2; 25-31
- Buks, E. and Roukes, M. L. (2001) Stiction, adhesion energy, and the Casimir effect in micromechanical systems; Physical Review B; Vol. 63; No. 3; Art. No. 033402; 10.1103/PhysRevB.63.033402
- Yang, Y. T. and Ekinci, K. L., et el. (2001) Monocrystalline silicon carbide nanoelectromechanical systems; Applied Physics Letters; Vol. 78; No. 2; 162-164; 10.1063/1.1338959
- Schwab, K. and Arlett, J. L., et el. (2001) Thermal conductance through discrete quantum channels; Physica E; Vol. 9; No. 1; 60-68; 10.1016/S1386-9477(00)00178-8
- Blick, R. H. and Monzon, F. G., et el. (2000) Magnetotransport measurements on freely suspended two-dimensional electron gases; Physical Review B; Vol. 62; No. 24; 17103-17107; 10.1103/PhysRevB.62.17103
- Monzon, F. G. and Tang, H. X., et el. (2000) Magnetoelectronic Phenomena at a Ferromagnet-Semiconductor Interface; Physical Review Letters; Vol. 84; No. 21; 5022; 10.1103/PhysRevLett.84.5022
- Schwab, K. and Fon, W., et el. (2000) Quantized thermal conductance: measurements in nanostructures; Physica B; Vol. 280; No. 1-4; 458-459; 10.1016/S0921-4526(99)01835-9
- Midzor, M. M. and Wigen, P. E., et el. (2000) Imaging mechanisms of force detected FMR microscopy; Journal of Applied Physics; Vol. 87; No. 9; 6493-6495; 10.1063/1.372748
- Schwab, K. and Henriksen, E. A., et el. (2000) Measurement of the quantum of thermal conductance; Nature; Vol. 404; No. 6781; 974-977; 10.1038/35010065
- Tang, H. X. and Monzon, F. G., et el. (2000) Ballistic spin transport in a two-dimensional electron gas; Physical Review B; Vol. 61; No. 7; 4437-4440; 10.1103/PhysRevB.61.4437
- Lifshitz, Ron and Roukes, M. L. (2000) Thermoelastic damping in micro- and nanomechanical systems; Physical Review B; Vol. 61; No. 8; 5600-5609; 10.1103/PhysRevB.61.5600
- Roukes, M. L. (1999) Yoctocalorimetry: phonon counting in nanostructures; Physica B; Vol. 263-264; 1-15; 10.1016/S0921-4526(98)01482-3
- Zhang, Z. and Hammel, P. C., et el. (1998) Ferromagnetic resonance force microscopy on microscopic cobalt single layer films; Applied Physics Letters; Vol. 73; No. 14; 2036-2038; 10.1063/1.122359
- Suh, B. J. and Hammel, P. C., et el. (1998) Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy; Journal of Vacuum Science and Technology B; Vol. 16; No. 4; 2275-2279; 10.1116/1.590161
- Cleland, A. N. and Roukes, M. L. (1998) A nanometre-scale mechanical electrometer; Nature; Vol. 392; No. 6672; 160-162; 10.1038/32373
- Angelescu, D. E. and Cross, M, et el. (1998) Heat transport in mesoscopic systems; Superlattices and Microstructures; Vol. 23; No. 3-4; 673-689; 10.1006/spmi.1997.0561
- Monzon, F. G. and Johnson, Mark, et el. (1997) Strong Hall voltage modulation in hybrid ferromagnet/semiconductor microstructures; Applied Physics Letters; Vol. 71; No. 21; 3087-3089; 10.1063/1.120254
- Tighe, T. S. and Worlock, J. M., et el. (1997) Direct thermal conductance measurements on suspended monocrystalline nanostructures; Applied Physics Letters; Vol. 70; No. 20; 2687-2689; 10.1063/1.118994
- Zhang, Z. and Roukes, M. L., et el. (1996) Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy; Journal of Applied Physics; Vol. 80; No. 12; 6931-6938; 10.1063/1.363767
- Yurke, B. and Roukes, M. L., et el. (1996) A low-noise series-array Josephson junction parametric amplifier; Applied Physics Letters; Vol. 69; No. 20; 3078-3080; 10.1063/1.116845
- Cleland, A. N. and Roukes, M. L. (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals; Applied Physics Letters; Vol. 69; No. 18; 2653-2655; 10.1063/1.117548
- Schwabe, N. F. and Cleland, A. N., et el. (1995) Perturbation of tunneling processes by mechanical degrees of freedom in mesoscopic junctions; Physical Review B; Vol. 52; No. 17; 12911-12920
- Shepard, K. L. and Roukes, M. L., et el. (1992) Experimental measurement of scattering coefficients in mesoscopic conductors; Physical Review B; Vol. 46; No. 15; 9648-9666; 10.1103/PhysRevB.46.9648
- Shepard, K. L. and Roukes, M. L., et el. (1992) Direct measurement of the transmission matrix of a mesoscopic conductor; Physical Review Letters; Vol. 68; No. 17; 2660-2663; 10.1103/PhysRevLett.68.2660
- Weiss, D. and Roukes, M. L., et el. (1991) Electron pinball and commensurate orbits in a periodic array of scatterers; Physical Review Letters; Vol. 66; No. 21; 2790-2794; 10.1103/PhysRevLett.66.2790
- Roukes, M. L. and Alerhand, O. L. (1990) Mesoscopic junctions, random scattering, and strange repellers; Physical Review Letters; Vol. 65; No. 13; 1651-1655; 10.1103/PhysRevLett.65.1651
- Roukes, M. L. and Scherer, A., et el. (1990) Are transport anomalies in "electron waveguides" classical?; Physical Review Letters; Vol. 64; No. 10; 1154-1158; 10.1103/PhysRevLett.64.1154
- Thornton, T. J. and Roukes, M. L., et el. (1989) Boundary scattering in quantum wires; Physical Review Letters; Vol. 63; No. 19; 2128-2131; 10.1103/PhysRevLett.63.2128
- Scherer, A. and Roukes, M. L. (1989) Quantum device microfabrication: Resolution limits of ion beam patterning; Applied Physics Letters; Vol. 55; No. 4; 377-379; 10.1063/1.101876
- Cheeks, T. L. and Roukes, M. L., et el. (1988) Narrow conducting channels defined by helium ion beam damage; Applied Physics Letters; Vol. 53; No. 20; 1964 -1966; 10.1063/1.100337
- Scherer, A. and Craighead, H. G., et el. (1988) Electrical damage induced by ion beam etching of GaAs; Journal of Vacuum Science and Technology B; Vol. 6; No. 1; 277-279; 10.1116/1.584023
- Roukes, M. L. and Scherer, A., et el. (1987) Quenching of the Hall Effect in a One-Dimensional Wire; Physical Review Letters; Vol. 59; No. 26; 3011-3015; 10.1103/PhysRevLett.59.3011
- Scherer, A. and Roukes, M. L., et el. (1987) Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage; Applied Physics Letters; Vol. 51; No. 25; 2133-2135; 10.1063/1.98970
- Freeman, M. R. and Germain, R. S., et el. (1986) Low-temperature nuclear magnetic resonance with a dc SQUID amplifier; Applied Physics Letters; Vol. 48; No. 4; 300-302; 10.1063/1.96587
- Roukes, M. L. and Freeman, M. R., et el. (1985) Hot electrons and energy transport in metals at millikelvin temperatures; Physical Review Letters; Vol. 55; No. 4; 422-425; 10.1103/PhysRevLett.55.422
- Hammel, P. C. and Roukes, M. L., et el. (1983) Magnetic Coupling between 3He and 19F at Low Temperatures; Physical Review Letters; Vol. 51; No. 23; 2124-2127; 10.1103/PhysRevLett.51.2124
- Roukes, Michael L. and Wilkins, John W. (1982) Negative dynamic conductance from photon-assisted tunneling in superconducting junctions; Applied Physics Letters; Vol. 41; No. 8; 767-769; 10.1063/1.93671