Yu, Tony Yue
- Porta, Mauro and Yu, Tony Yue (2021) Non-archimedean quantum K-invariants; 10.48550/arXiv.2001.05515
- Hacking, Paul and Keel, Sean, el al. (2021) Secondary fan, theta functions and moduli of Calabi-Yau pairs; 10.48550/arXiv.2008.02299
- Yu, Tony Yue (2021) Enumeration of holomorphic cylinders in log
Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula; Geometry & Topology; Vol. 25; No. 1; 1-46; 10.2140/gt.2021.25.1
- Porta, Mauro and Yu, Tony Yue (2020) Representability theorem in derived analytic geometry; Journal of the European Mathematical Society; Vol. 22; No. 12; 3867-3951; 10.4171/JEMS/998
- Keel, Sean and Yu, Tony Yue (2019) The Frobenius structure theorem for affine log Calabi-Yau varieties containing a torus; 10.48550/arXiv.1908.09861
- Nicaise, Johannes and Xu, Chenyang, el al. (2019) The non-archimedean SYZ fibration; Compositio Mathematica; Vol. 155; No. 5; 953-972; 10.1112/S0010437X19007152
- Yu, Tony Yue (2018) Gromov compactness in non-archimedean analytic geometry; Journal Für Die Reine und Angewandte Mathematik; Vol. 2018; No. 741; 179-210; 10.1515/crelle-2015-0077
- Porta, Mauro and Yu, Tony Yue (2018) Derived non-archimedean analytic spaces; Selecta Mathematica - New Series; Vol. 24; No. 2; 609-665; 10.1007/s00029-017-0310-1
- Porta, Mauro and Yu, Tony Yue (2018) Derived Hom spaces in rigid analytic geometry; 10.48550/arXiv.1801.07730
- Yu, Tony Yue (2016) Enumeration of holomorphic cylinders in log Calabi–Yau surfaces. I; Mathematische Annalen; Vol. 366; No. 3-4; 1649-1675; 10.1007/s00208-016-1376-3
- Porta, Mauro and Yu, Tony Yue (2016) Higher analytic stacks and GAGA theorems; Advances in Mathematics; Vol. 302; 351-409; 10.1016/j.aim.2016.07.017
- Yu, Tony Yue (2015) Tropicalization of the moduli space of stable maps; Mathematische Zeitschrift; Vol. 281; No. 3-4; 1035-1059; 10.1007/s00209-015-1519-3
- Yu, Tony Yue (2015) Balancing conditions in global tropical geometry; Annales de l'Institut Fourier; Vol. 65; No. 4; 1647-1667; 10.5802/aif.2970
- Yu, Tony Yue (2014) The number of vertices of a tropical curve is bounded by its area; L'Enseignement Mathématique; Vol. 60; No. 3/4; 257-271; 10.4171/lem/60-3/4-3